卡爾·弗里德里希·高斯

2025-06-14 03:14:24 1958世界杯

数学

编辑

1828年出版的天文学通报中高斯肖像。

代数和数论

编辑

高斯在其1799年的博士论文中清晰地阐明了複數的概念和应用,并且严格证明了代数基本定理,该定理指出任何一个一元复系数多项式方程都至少有一个复数根,在此之前,包括让·勒朗·达朗贝尔在内的数学家作出了对此定理错误的证明,高斯的论文也包含对达朗贝尔证明的指正[14]。

主条目:算术研究

从高斯的数学日记中的条目可知,他至少已于1796年开始研究数论问题,其中他的一些发现已经由其他学者先于其完成。1798年(时年21岁)至1799年[13],高斯在《算术研究》一教材中对所有上述这些成果进行了汇编,这本书也使得数论得以严谨化和系统化,其中涵盖了初级和代数数论。在这本教材的主要章节,高斯给出了二次互反律的两个证明方法,这成为数论继续发展的重要基础。这部著作的第一章,引入同餘的概念,並用符號≡表示。他还证明了费马多边形数定理的三角形数的情况。在最后一章中,高斯将一个几何问题转化为代数问题,他断言正多边形能用尺规作图(这时称为可作图多边形)当且仅当该正多边形的边数是2的非负整数次幂和任意个(可为0个)相异费马素数的乘积,高斯给出了这一命题充分性的证明,但没有给出必要性的证明。[15]必要性的严格证明由法国数学家皮埃尔·洛朗·旺策尔(英语:Pierre Wantzel)于1837年给出。[16]

高斯可能在1801年就知晓了类数公式[17],同年,他发表了关于有限域中系数多项式的解的数量的结论,150年后促成了韦尔猜想(英语:Weil conjectures)。此外他还研究了连分数,发现了素数分布规律即質数定理,和证明了费马大定理n=5的情形[18]和正则排列的克卜勒猜想。

通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后專注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率论中大量使用。

高斯推导了寻找复活节日期和逾越节日期的计算方法。1805年,他在计算小行星帕拉斯(Pallas)和朱诺(Juno)的轨道时,发现了用于计算离散傅里叶变换的库利-图基快速傅里叶变换算法,比詹姆斯·库利和约翰·图基早160年,之后他将其延伸为三角插值法(英语:Trigonometric interpolation)。[19]

几何

编辑

1796年(时年19岁),高斯给出了仅用尺规作图构造出正17边形的方法,这是2000多年来正多边形尺规作图的首次进展。[20]

非欧几何方面。高斯称其发现了非欧几何的可能性,事实上他确是正真预见并具有相当完整的非欧几何想法的第一人,但他并没有正式发表过相关内容[21]。1829年之前高斯给其他数学家的信件中,他模糊地讨论了平行公设的问题,邓宁顿(英语:G. Waldo Dunnington)认为,在鲍耶·亚诺什发表非欧几何之前,高斯实际上已经完全掌握了非欧几何,但是他拒绝发表任何东西,因为他害怕引起争议。[22][23]“非欧几何”一词由他创造[24],这一发现是几何领域的革命性转变,因为它使数学家摆脱了错误的观念,即欧几里得公理是使几何学一致且无矛盾的唯一方法。对非欧几何的研究促成了爱因斯坦的广义相对论,后者将宇宙描述为非欧几里得空间。

天文学和大地测量学

编辑

1818年至1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。

高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”对它命名,称为谷神星,并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家海因里希·歐伯斯根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(拉丁語:Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。

高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五到六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论直至现在仍有应用的价值。

汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点的大地坐标。

为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学所认可。

高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken——Thüringer Wald的Inselsberg——哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。後來高斯朋友的儿子鮑耶·亞諾什在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,俄國學者罗巴切夫斯基用德文写了《平行线理论的几何研究》一文,这篇论文的发表引起了高斯的注意。他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。高斯、亞諾什和罗巴切夫斯基後來被並稱為微分几何的始祖。

物理学

编辑

高斯-韋伯磁强计

出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。

19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与物理学家威廉·爱德华·韦伯(1804-1891年)在电磁学领域共同工作。他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。

1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论自己以前已经证明过了,只是因为基础理论的不完备而没有发表。事实上高斯把他的研究结果都记录了起来。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

最新发表
友情链接